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The generalized Penrose tiling is, in fact, an infinite set of decagonal tilings. It is

constructed with the same rhombs (thick and thin) as the conventional Penrose

tiling, but its long-range order depends on the so-called shift parameter (s 2

h0; 1)). The structure factor is derived for the arbitrarily decorated generalized

Penrose tiling within the average unit cell approach. The final formula works in

physical space only and is directly dependent on the s parameter. It allows one to

straightforwardly change the long-range order of the refined structure just by

changing the s parameter and keeping the tile decoration unchanged. This gives

a great advantage over the higher-dimensional method, where every change of

the tiling (change in the s parameter) requires the structure model to be built

from scratch, i.e. the fine division of the atomic surfaces has to be redone.

1. Introduction

The structure analysis of decagonal quasicrystals (DQCs) is

still a great challenge. Despite many years of efforts, the

accuracy of structure refinements is far from that of periodic

crystals. One of the important problems is determining the

long-range order (LRO), that is, the right kind of decagonal

tiling underlying the structure. Modern high-resolution elec-

tron microscopy can be helpful, but even the best quality

images depict only a small fraction of the structure and

hence no definite statement about the kind of tiling underlying

the structure can be made. Two main approaches are used

to tackle the structure refinement of DQCs: the higher-

dimensional (nD) approach (de Wolff, 1974; Janssen, 1986;

Takakura et al., 2001; Cervellino et al., 2002) and the average

unit cell (AUC) approach (Wolny, 1998; Kozakowski & Wolny,

2010). The details of these methods are broadly discussed in

the literature. However, both share a common problem. The

first step of model building is to describe the structure in

physical space in the framework of a pre-assumed tiling. Then,

in the nD approach, the model has to be embedded in the

higher-dimensional space to obtain the atomic surfaces in the

perpendicular space. In the AUC approach the decoration of

the unit tiles can be directly used for the structure-factor

calculation. A vast majority of (if not all) models of DQCs in

the literature are based on the Penrose mutual local deriva-

bility (PMLD) class of tilings (Baake et al., 1991), e.g. penta-

gonal Penrose tiling, rhombic Penrose tiling, hexagon–star–

boat tiling. The choice of a particular tiling from the PMLD

class is a matter of convenience in the sense that the structural

details may be more easily understood when described using

one tiling then another. However, formally, the LRO for all

PMLD class tilings is the same and if the structure is described

by one tiling from the PMLD class it can also be described by
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any other tiling from this class. Recently the rhombic Penrose

tiling (PT) was used as a quasilattice in the AUC approach to

describe a variety of different DQC phases (Kuczera et al.,

2011, 2012). However, it is an open question whether PMLD

class tilings really describe their LRO in the best way.

PT can be easily generalized. The so-called generalized

Penrose tiling (GPT) (Pavlovitch & Kleman, 1987; Ishihara &

Yamamoto, 1988), in principle, does not belong to the PMLD

class. The unit tiles of GPT are still the two Penrose rhombs

and the local symmetry is preserved. However, its matching

rules, and hence the tile arrangements, depend on a certain

continuous parameter (s 2 h0; 1)). There is therefore an infi-

nite set of different GPTs for different s values (GPT reduces

to PT for s = 0) and by varying s the LRO of the tiling is

changed. The diffraction properties of GPT have been studied

before, e.g. Jarić (1986). The goal of this paper, however, is to

derive a structure factor of arbitrarily decorated GPT in the

AUC approach and show how the GPT concept can be

practically applied for the refinement process of DQCs. The

final formula should work in physical space only and be a

function of the parameter s. This will allow one to change the

LRO of the structural model with fixed unit tile decorations.

Note that such an approach gives a great advantage over the

nD approach. An nD model has to be constructed from

scratch every time the tiling is changed (every time s is

changed the atomic surfaces have to be repartitioned) and,

hence, there is no way to optimize the s parameter in the

refinement process.

2. Construction and matching rules of GPT

The easiest way to generate decagonal tilings is to project a

five-dimensional hypercubic lattice (Steurer & Deloudi, 2009).

The construction requires two five-dimensional bases called D

and V. These two bases are rotated with respect to each other

and can be related by the following equation:
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Figure 1
The ASs of PT (a), GPT s = 0.2 (b), GPT s = 0.5 (c). The factor 1/21/2 on the z axis was omitted.

Table 1
The coordinates ðx?; y?Þ of ASs for z? ¼ 1; 2; 3 as a function of shift (s), � ¼ ð� þ 2Þ1=2=2.
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The matrix in the above equation is traditionally called the W

matrix. In the V basis the five-dimensional space can be

decomposed to two orthogonal subspaces: two-dimensional

parallel space (par-space, Vk) and three-dimensional perpen-

dicular space (perp-space, V?). PT is obtained by projecting a

five-dimensional hypercubic lattice on the par-space through a

window consisting of four pentagons (and one additional

point) in perp-space. These four pentagons are called

atomic surfaces (ASs) and their vertices are obtained by

projecting one unit cell of the five-dimensional hypercubic

lattice on perp-space (Fig. 1a). The vertices of the AS

form a rhombicosahedron in perp-space. In other words, only

a subset of points of the five-dimensional hypercubic

lattice, whose projection on the perp-space lies within

the ASs, is projected on the par-space to form PT. Such a

subset of points lies within a ‘projection strip’ in five-

dimensional space. If such a projection strip is shifted by a

fraction of a unit vector, the coordinates of the rhombicosa-

hedron will change. Points of the five-dimensional hypercubic

lattice projected on perp-space will now intersect the

rhombicosahedron at different heights, resulting in a

change of shape of ASs (Figs. 1b, 1c). This is equivalent to a

shift of the AS in Fig. 1(a) along the body diagonal of the

rhombicosahedron. Three of the previously pentagonal ASs

will become decagons (equilateral only for the shift equal to

0.5), one will remain pentagonal, and additionally one more

pentagon will be created (for PT it is a single point). The exact

coordinates of ASs as a function of s are presented in Table 1.

A projection of the five-dimensional hypercubic lattice

through a window consisting of these five polygons will

generate the GPT whose structure will depend on the shift

parameter s.

The GPT is built out of two rhombs, like the regular PT.

Examples of GPT structures with a different shift parameter

are shown in Fig. 2. It is clear that PT matching rules cannot

be applied to GPT. The seven possible vertex configurations

(if matching rules are neglected) of PT are shown in Fig. 3.

New vertex configurations for GPT are the result of the

existence of an additional AS, and the change of shape of

remaining ASs. As an example, additional possible vertex

configurations for shift parameter 0.2 and 0.5 are shown

in Fig. 4. It is important to note that different sets of vertex

configurations will be created for each value of the shift

parameter. That is essentially why every value s gives a

different LRO of the resulting structure. The ratio of the

number of L and the number of S rhombs remains unchanged

and, as for PT, is equal to �.
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Figure 2
Generalized Penrose tilings for different shift parameters: (a) s = 0, (b) s =
0.2 and (c) s = 0.5.



3. Density distribution

Both PT and GPT have the same building units, i.e. thick (L)

and thin (S) rhombs. Each of these rhombs can have five

distinct orientations. In Fig. 5 one L rhomb is depicted in Vk
subspace and projected along z?V? subspace. (Note that the

shape of an L rhomb in V? subspace projected along the z?
direction is the same as the shape of an S rhomb in Vk
subspace. An analogous statement is true for the shape of an S

rhomb.) Any edge of any rhomb (L or S) can always be

described as a projection of a D-space basis vector. The

D-space coordinates of appropriate basis vectors are given in

Fig. 5. We will represent the L rhomb in Fig. 5 by one of its

vertices (A) and find out what are the possible locations of A

on the ASs. Four ASs (and one additional point as in Fig. 1) of

ordinary PT have five consecutive integer values of the z?
coordinate (they are obtained by projection of one unit cell of

the five-dimensional hypercubic lattice). Without the loss of

generality, we can assume that these coordinates are

1; 2; . . . ; 5 [at z? = 1 a single point is located (see Fig. 1a)]. It is

easy to see that point A of the rhomb in Fig. 5 can only be

located at z? = 2 or at z? = 3. It is so because the z? coordinate

is increased by 1 for points B and C and by 2 for point D [see

equation (1) (neglecting the normalizing factors 21/2)]. Since

the area at z? = 1 is zero, these are the only possibilities. An

analogous statement is valid for L and S rhombs in any

orientation. We can conclude that in PT there are two

different families of L and S rhombs with five orientations

each. One family with rhomb vertices located at z? = 2, 3, 4

and the other with rhomb vertices located at z? = 3, 4, 5. In the

structure model, the atomic decoration of rhombs from

different families can be the same, but does not have to be.

Note, however, that if the decoration is different, the

symmetry is decreased to pentagonal. For GPT the AS at z? =

1 is no longer a single point (Figs. 1b, 1c). It follows that in the

GPT there are three distinct families of rhombs. The addi-

tional family can have vertices located at z? = 1, 2, 3. Again, in

principle, the decoration of each of the three families could be

different. In Fig. 6 the GPT structures from Fig. 2 have been

coloured in such a way that each family of rhombs is marked

with a different colour.

The next step is to find out where exactly the point A of a

given kind of rhomb from a given family in a given orientation

can be located on the respective AS. An example construction

for an L rhomb (oriented as in Fig. 5) from a family at z? = 2,

3, 4 is shown in Fig. 7. Point A at z? = 2 can only take such

positions that points B and C at z? = 3 and point D at z? = 4

stay inside their respective ASs. The searched distribution has

a triangular shape for PT and is hexagonal for GPT. An

analogous construction can be done for any rhomb in any

orientation and from any family. It is worth mentioning that

the distributions for families z? = 1, 2, 3 and z? = 3, 4, 5 will
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Figure 5
An example L rhomb in Vk subspace and V? subspace projected along
the z? direction.

Figure 3
Seven possible rhomb configurations for PT (matching rules neglected).

Figure 4
Examples of new rhomb configurations for GPT, s = 0.2 (a) and s = 0.5 (b).



always be triangular for both PT and GPT. This is because the

ASs at z? = 1 and z? = 5 are pentagonal for both PT and GPT.

It is also important to note that it is enough to get the distri-

bution for one orientation of a given rhomb from a given

family. The rest can be obtained by rotation. The consecutive

orientations of rhombs in Vk subspace are related by multiples

of 2�/5; the consecutive orientations of the distributions in V?,

however, are related by multiples of 4�/5 [see equation (1)].

The distribution of point A for L and S rhombs oriented as in

Fig. 8 for all three families of rhombs is given in Table 2. As

mentioned before, the distributions of other orientations from

a given family can be obtained by proper rotations.

4. Structure factor

The derivation of the structure factor for an arbitrarily

decorated GPT using the AUC is done similarly to that of the

structure factor of decorated PT (Kozakowski & Wolny, 2010).

We will only sketch the derivation here. For a decorated GPT

we can write the electron density as

�GPT ¼
P

T¼fL;Sg

P3

f¼1

P5

�¼1

�lattice
Tf ;�

�tile
Tf ;�
: ð2Þ
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Figure 7
The procedure of obtaining the distribution shape (grey region) of PT (a)
and GPT, s ¼ 0:2 (b). Thick dashed lines indicate the ASs at z? ¼ 2
(black), z? ¼ 3 (red) and z? ¼ 4 (blue). Thin solid lines are ASs shifted
in the ðx?; y?Þ plane by the following vectors: AB ¼ ½�0:5ð� � 1Þ;
�0:5ð� þ 2Þ1=2; 1�, AC ¼ ½�0:5ð� � 1Þ; 0:5ð� þ 2Þ1=2; 1�, AD ¼ ð�� þ 1;
0; 2Þ. The grey regions at z? ¼ 2 show all possible locations of point A of
the L rhomb oriented as in Fig. 5 such that the points B, C ( z? ¼ 3) and
D ðz? ¼ 4) stay within their respective ASs.

Figure 6
Distribution of rhomb families in physical space for PT (a), GPT s = 0.2
(b) and GPT s = 0.5 (c). The family based on z? = 1, 2, 3 is coloured in
green, z? = 2, 3, 4 in yellow and z? = 3, 4, 5 blue.



There are two kinds of rhombs [L and S – sum over T in

equation (2)], grouped in the three distinct families (sum over

f), and each of the rhombs in each family can be found in GPT

in five different orientations (sum over �). Having this in mind,

we can describe the electron density of an arbitrarily deco-

rated GPT as summed up convolutions of sublattices of a given

kind of rhomb from a given family in a given orientation

ð�lattice
Tf ;�
Þ and the electron density inside a particular rhomb

ð�tile
Tf ;�
Þ. Note that the decoration of each kind of rhomb in a

given family is the same (properly rotated for different

orientations). The structure factor is simply a Fourier trans-

form (FT) of the electron density in equation (2):

FTð�GPTÞ ¼
P

T¼fL;Sg

P3

f¼1

P5

�¼1

FTð�lattice
Tf ;�
Þ � FTð�tile

Tf ;�
Þ: ð3Þ

The FTof the electron-density distribution inside a given tile is

just an ordinary sum of exponential factors – like for a peri-

odic crystal:

FTð�tile
Tf ;�
Þ ¼

PnTf ;�

j

pjf
j
a expðikn;m � r

T�
j Þ; ð4Þ

where nTf ;�
is the number of atoms decorating the structure

unit Tf ;�; r
T�
j is the position (in par-space) of a given atom

in a structural unit with respect to the representing point A

(Fig. 8), and kn;m is a reciprocal-lattice vector written using

(n, m) indices (Kozakowski & Wolny, 2010). Assuming that a is

the rhomb’s edge length, one writes

kx ¼
2�

5a
ðn1 þ n2Þ þ

ðm1 þm2Þ

�

� �
;

ky ¼
2�

5a
�ð� þ 2Þ1=2

ðn1 � n2Þ þ
ðm1 �m2Þ

�

� �
: ð5Þ

f j
a is the atomic scattering factor of a given atom, pj is the

fraction of an atom inside the structure unit (pj = 1 for atoms

inside the rhombs, pj = 0.5 at the edges, at the vertices pj = ’
2�

where ’ is the angle between the edges forming the vertex).

The FT of the sublattice reads

FTð�lattice
Tf ;�
Þ ¼ exp½i’ðzA

?Þ�
R

AUCðTf ;�Þ

exp½iðjn;m � uÞ� du; ð6Þ

where

’ðzA
?Þ ¼ �

4�

5
½ðn1 þ n2Þ � 0:5ðm1 þm2Þ�z

A
?;

�x ¼
2�

5
½ðn1 þ n2Þ � �ðm1 þm2Þ�;

�y ¼
2�

5
�ð� þ 2Þ1=2

½ðn1 � n2Þ � �ðm1 �m2Þ�:

The integral in equation (6) runs over the AUC distribution

of point A representing a given rhomb Tf ;�. It is obtained by

an oblique projection (ux ¼ ��
�2x?; uy ¼ ��

�2y?) of the

distributions found in x3 and listed in Table 2, and jn;m is a

rescaled wavevector in the FT [the rescaling arises due to the

oblique projection and scaling properties of PMLD tilings

(Kozakowski & Wolny, 2010, Appendix A)]. Note that the

value of zA
? can only be 1, 2 or 3, depending on the family of

rhombs. The structure factor is a function of the shift para-

meter s. It enters the formula through the coordinates of the

distributions in Table 2.

5. Test results

The formula derived in the previous paragraph was tested in

two ways. In the first test we compared the diffraction inten-

sities obtained in the AUC approach with the diffraction

intensities obtained in the standard nD approach (by inte-

gration over the ASs). The tests were performed for multiple

values of s. All the rhombs were decorated at the vertices. The

results obtained in the AUC approach and in the nD approach

are fully equivalent. In the second step, we tested the formula

for an arbitrary decoration. All the rhombs were decorated at

the vertices. Additionally, the family of rhombs z? = 1, 2, 3

(the additional family that occurs only for GPT) was deco-

rated at (�1, 0.25) for the L rhomb and at (1/2�, 0.5) for the S

rhomb. The shift parameter s was set to 0.5. We calculated the

FT and then the inverse FT to get the electron-density

distribution. The results are shown in Fig. 9. All the maxima at

the rhomb vertices are numbered with an appropriate z?
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Figure 8
Example L and S rhombs. The distributions listed in Table 2 are given for
these orientations of L and S rhombs. The red dot indicates the ‘rhomb
representing point’. The relative coordinates of points decorating the
structure units are calculated with respect to this point.

Table 2
The coordinates ðxP; yPÞ of polygon areas as a function of shift(s) of the
GPT atomic surfaces, which describe the distribution of the chosen thick
and thin rhomb [� ¼ ð� þ 2Þ1=2=2].

Thick rhomb Thin rhomb

z? ¼ 1 s; 0ð Þ s; 0ð Þ

� s�
2 ;
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�
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2� ; �
� �
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2� ; �� s�
� �

� �
2þ s; ��

� �
1

2� þ s; �
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� �
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2 þ
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� �

1� �
2�

s�
2 ;

�
� �

s�
�

� �
�2

2 þ
s

2� ; �� s�
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coordinate. The family z? = 1, 2, 3 (marked in red) is clearly

additionally decorated at the assumed points. Fig. 10 shows the

diffraction pattern of GPT with s = 0.5 with and without the

additional decoration of the family z? = 1, 2, 3. The additional

decoration breaks mirror symmetry of the rhombs and hence

the Laue class is reduced from 10/mmm (Fig. 10a) to 10/m (Fig.

10b) (assuming a three-dimensional structure consisting of

GPT layers stacked periodically one above another).

6. Summary

We have shown the construction of the GPT and described the

process of finding distributions of points representing rhombs

in the AUC approach. Once these distributions are defined,

the structure-factor calculation becomes trivial and essentially

resembles the analogous calculation for periodic crystals. The

final formula was subjected to various tests and proved to be

correct. GPT is potentially an attractive alternative for

building models of DQCs. The possibility to continuously

change the LRO with just one parameter should make it

feasible to attempt to fit the LRO during the refinement

process of DQCs. In this case the AUC approach gives a

tremendous advantage over the nD method because the

structure factor directly depends on the shift parameter. In

turn, in the nD approach, every change of the shift parameter

practically requires a fresh repartitioning of ASs. An attempt

to make the fine partitioning of ASs in the DQC model

dependent on the s parameter, though in principle possible,

would be incredibly complex. Additionally, for every change

in the physical space model (e.g. atomic coordinate shift), this

complex model would have to be changed. In the AUC

approach the change in the physical space model yields a

simple change in the decoration of the tiles.
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Figure 10
GPT diffraction pattern, s = 0.5, without (a) and with (b) the additional
decoration of the rhomb family z? = 1, 2, 3. The Laue symmetry is
reduced from 10/mmm (a) to 10/m (b). Crosses indicate peak positions.
Ellipses were used to indicate the regions of the diffraction pattern where
the peak intensities change and the 10/mmm symmetry is broken.

Figure 9
Electron density obtained from an inverse Fourier transform of the
diffraction pattern for GPT with s = 0.5, decorated in vertices of building
units, and with additional decoration in rhombs originating from new AS.
Around 2.8 million peaks were used for the calculation, reciprocal-lattice
vector range of |k| 2 h0; 35), background cutoff at 9% of the maximum
electron-density value. Numbers written in italics indicate the z?
coordinate of the AS from which the point originates.
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